Этот метод не только прост в использовании, но и более доступен с точки зрения стоимости, что делает его перспективным инструментом для ускорения процесса диагностики и снижения нагрузки на медицинский персонал.
Инновационный подход к анализу снимков сетчатки глаза, разработанный учеными УрФУ, основан на применении современных технологий искусственного интеллекта. Этот метод не только обеспечивает точные результаты, но и позволяет проводить диагностику более эффективно и оперативно.Исследователи центра "Искусственный интеллект" УрФУ создали инновационный метод анализа снимков электроретинограммы, который открывает новые возможности для диагностики различных неврологических заболеваний. Результаты исследования, опубликованные в журнале Bioengineering, подтверждают эффективность и перспективность этого подхода в медицинской практике.Искусственный интеллект, разработанный на основе данных о реальных пациентах, предоставляет врачу возможность анализировать модель, выявлять важные моменты и принимать обоснованные решения о необходимости проведения дополнительных обследований. Этот подход не призван заменять специалиста, а служит инструментом для повышения точности диагностики.По словам специалиста, такой метод позволяет врачу более глубоко понять принципы работы модели и выделить ключевые аспекты, которые могут быть упущены при обычном анализе. Важно отметить, что искусственный интеллект является всего лишь инструментом в руках врача, который остается необходимым звеном в процессе принятия решений.Алгоритм, созданный на основе данных, собранных международной группой ученых под руководством профессора Пола Констебля из Университета Флиндерса в Австралии, представляет собой результат коллективного труда исследователей, направленного на улучшение диагностики и лечения пациентов.При построении систем поддержки принятия врачебных решений на основе сигналов электроретинограмм специалисты обучили четыре метода на основе предоставленных данных. Для анализа и объяснения предсказаний алгоритмов машинного обучения была использована специальная библиотека SHAP, основанная на теории игр для определения вклада каждой функции в модель. Этот подход позволяет выявить оптимальный способ постановки диагноза.В отличие от предыдущих попыток построения подобных систем, где для анализа использовались нейронные сети, требующие большого объема данных и вычислительно сложные, в данном случае был выбран более простой и эффективный метод. Использование методов машинного обучения и библиотеки SHAP позволяет не только делать точные прогнозы, но и понимать, как именно модель принимает решения и на каких признаках она основывается.В свете последних достижений в области искусственного интеллекта, наши алгоритмы представляют собой инновационный подход к предварительной диагностике заболеваний. С их помощью врачи смогут быстро и точно определить вероятность развития различных патологий, что позволит начать лечение на ранних стадиях и повысит шансы на выздоровление. Это особенно актуально в случае заболеваний сетчатки, таких как врожденная куриная слепота, глаукома и другие нейродегенеративные расстройства.Как отмечает доцент центра "Искусственный интеллект" УрФУ Михаил Ронкин, наши алгоритмы отличаются высокой эффективностью, простотой в использовании и низкими требованиями к техническим ресурсам. Это делает их доступными для широкого круга медицинских учреждений и специалистов, что способствует повышению качества медицинской помощи и снижению затрат на диагностику.В дальнейших планах исследователей лежит доработка алгоритмов для более точного распознавания заболеваний сетчатки, что позволит своевременно выявлять и эффективно лечить подобные патологии. Это открывает новые перспективы в области медицинской диагностики и помогает сделать здравоохранение более эффективным и доступным для всех пациентов.Источник фото: РИА Новости